p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells
نویسندگان
چکیده
Paclitaxel (PTX) is a chemotherapeutic agent that is used to treat a variety of cancers, including non-small cell lung cancer (NSCLC). However, the emergence of drug resistance limits the utility of PTX. This study determined the signaling pathway that contributes to PTX resistance. We first established PTX resistant cell lines (H460/R and 226B/R) using a dose-escalating maintenance of PTX. We found that p38 MAPK and epidermal growth factor receptor (EGFR) were constitutively activated in these cell lines. The inhibition of p38 MAPK activity by SB203580 treatment or the transfection of dominant-negative p38 MAPK sensitized both cell lines to PTX treatment. Erlotinib, an EGFR inhibitor, also increased PTX-induced apoptosis in PTX resistant cells, which suggests a role for p38 MAPK and EGFR in the development of PTX resistance. We demonstrated that p38 MAPK enhanced EGFR expression via the induction of the rapid degradation of mouse double-minute 2 homolog (MDM2) and the consequent stabilization of p53, a transcription factor of EGFR. These results suggest for the first time that the p38 MAPK/p53/EGFR axis is crucial for the facilitation of PTX resistance in NSCLCs. We also propose a mechanism for the role of the tumor-suppressor p53 in drug resistance. These results provide a foundation for the future development of potential therapeutic strategies to regulate the p38 MAPK/p53/EGFR pathway for the treatment of lung cancer patients with PTX resistance.
منابع مشابه
القای آپوپتوز وابسته به p53 در ردهی سلولی لوسمی لنفوبلاستیک حاد پیشساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA
Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملSelective inhibition of histone deacetylase 2 induces p53-dependent survivin downregulation through MDM2 proteasomal degradation
In the present study, we found that selective inhibition of histone deacetylase 2 (HDAC2) with small inhibitory RNA (siRNA) induced survivin downregulation in a p53-dependent manner. Interestingly, suberoylanilide hydroxamic acid (SAHA) or knockdown of HDAC2 induced downregulation of Mdm2, a negative regulator of p53, at the protein level. SAHA and/or HDAC2 siRNA increased Mdm2 ubiquitination, ...
متن کاملGenistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells
Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016